DHO900 series

Digital Oscilloscope

Data Sheet
DSA37101-1110
Jul. 2023

DHO900 series
 Digital Oscilloscope

Compact Size, Various Functions

7" Capacitive Multi-touch Screen

Application Scenarios

It is compact and portable, easy to be used on the workbench, in the classroom, on the test site, and in other application scenarios.
You can put it on the workbench, with supporting legs folded or unfolded; put it flat on the workbench; or fix its rear panel to the desktop clamp-on stand to save room.

N-in-1 Integrated Digital Oscilloscope

Digital Oscilloscope

Capture rate up to $1,000,000 \mathrm{wfms} / \mathrm{s}$ (in UltraAcquire Mode), 50 Mpts memory depth, and 12-bit high resolution

- Logic Analyzer

16 digital channels (std.), 25 Mpts memory depth for the waveforms of all the digital channels, max. sample rate $625 \mathrm{MSa} / \mathrm{s}$
Support analog/digital channel triggers and decodes, convenient digital channel operation

- Arbitrary Function Generator (AFG)

Single-channel AFG output (std.), support 6 standard waveforms and user-defined waveforms, with the max. frequency 25 MHz
Sample rate up to $156 \mathrm{MSa} / \mathrm{s}$, support modulation

- Protocol Analyzer

Support RS232/UART, I2C, SPI, CAN, and LIN serial bus decodings that can help engineers make an in-depth waveform analysis; widely used in the auto electronics and other fields.

- Bode Plot (Standard for DHO914S and DHO924S)

The DHO900 series can generate the sweep signal of the specified range by controlling the built-in signal generator module and output the signal to the switching power supply to carry out loop analysis test. The bode plot can display the gain and phase variations of the system under different frequencies, helping engineers analyze the phase margin (PM) and gain margin (GM) to quickly judge whether the system is stable.

- Type-C Interface

Provides power with the mobile power supply
 via this interface, making the on-site test more flexible.

Application

With a standard configuration of embedded decodes, the DHO900 series supports digital signal analysis, efficiently analyzing the analog and digital signals in the embedded system.

The 12-bit resolution delivers 4096 vertical digitizing levels, capable of capturing the signal details of the high-precision power supply. The S model is equipped with a standard configuration of built-in signal generator and Bode plot loop analysis function, making it easy to do the switching power supply test.

The DHO series offers standard CAN and LIN auto bus decodes, capable of addressing the decoding demands of the automobile communication system.

Product Features

Product Features

- Ultra-low noise floor, purer signal, never miss the small signals
- Up to 12 bits resolution for all the models of this series
- Max. analog bandwidth of $250 \mathrm{MHz}, 4$ analog channels
- 16 digital channels (std.), logic probe required to be purchased if needed
- Max. real-time sample rate of $1.25 \mathrm{GSa} / \mathrm{s}$
- Max. memory depth of 50 Mpts
- Vertical sensitivity range: $200 \mu \mathrm{~V} /$ div to $10 \mathrm{~V} /$ div
- Max. capture rate of $1,000,000 \mathrm{wfms} / \mathrm{s}$ (in UltraAcquire mode)
- Digital phosphor display with real-time 256-level intensity grading
- Integrates the AFG function, bode plot analysis, histogram, digital signal analysis, and etc
- Waveform search and navigation function allows you to debug the signal anomalies faster
- 7" (1024×600) capacitive multi-touch screen
- Brand new Flex Knob brings user-friendly experience
- USB Device \& Host, LAN, and HDMI interfaces (std.) for all the models of this series
- Novel and delicate industrial design, easy to operate
- Unique online upgrade

The DHO900 series is RIGOL's new launched high-performance economical digital oscilloscope. Though compact in design, it has superior performance. It features a capture rate up to 1,000,000 $\mathrm{wfms} / \mathrm{s}$ (in UltraAcquire Mode), 50 Mpts memory depth, 12 bits resolution, and low noise.

The DHO900 series supports 16 digital channels. One instrument can make an analysis on both the analog and digital signals to meet the embedded design and test scenarios. With an affordable price equivalent to purchasing an entry-level instrument, you can access the auto serial and parallel bus analysis, bode plot analysis, and other functions to meet the test demands in the R\&D, education, and scientific research fields.

RIGOL Probes and Accessories Supported

Model \quad Type	Description
Passive High-impedance Probe	

	Passive Highimpedance Probe	Attenuation: 10:1/1:1 1X BW: DC to 35 MHz 10X BW: DC to 150 MHz Compatibility: All models of RIGOL's digital oscilloscopes
	Passive Highimpedance Probe	Attenuation: 10:1/1:1 1X BW: DC to 35 MHz 10X BW: DC to 350 MHz Compatibility: All models of RIGOL's digital oscilloscopes
	Passive Highimpedance Probe	Attenuation: 10:1/1:1 1X BW: DC to 20 MHz 10X BW: DC to 150 MHz Compatibility: All models of RIGOL's digital oscilloscopes

High-voltage Single-ended Probe

RP1010H	High-voltage Probe	Attenuation: 1000:1 - BW: DC to 40 MHz - DC: 0 to 10 kV DC - AC: pulse $\leq 20 \mathrm{kVp}-\mathrm{p}$ - $A C$: sine $\leq 7 \mathrm{kV}$ rms - Compatibility: All models of RIGOL's digital oscilloscopes
	High-voltage Probe	Attenuation: 1000:1 - BW: DC to 150 MHz - $\mathrm{DC}+\mathrm{AC}_{\text {peak: }}: 18 \mathrm{kV}$ CAT II - $\mathrm{AC}_{\mathrm{rms}}: 12 \mathrm{kV}$ CAT II - Compatibility: All models of RIGOL's digital oscilloscopes

High-voltage Differential Probe

	High-voltage Differential Probe	- BW: DC to 70 MHz - Max. voltage ≤ 1500 Vpp - Compatibility: All models of RIGOL's digital oscilloscopes
	High-voltage Differential Probe	- BW: DC to 100 MHz - Max. voltage ≤ 1500 Vpp - Compatibility: All models of RIGOL's digital oscilloscopes
	High-voltage Differential Probe	- 50X BW: DC to 160 MHz - 500X BW: DC to 200 MHz - Max. voltage ≤ 1500 Vpp - Compatibility: All models of RIGOL's digital oscilloscopes
RP1025D	High-voltage Differential Probe	- BW: DC to 25 MHz - Max. voltage ≤ 1400 Vpp (DC + AC P-P) - Compatibility: All models of RIGOL's digital oscilloscopes
(1)	High-voltage Differential Probe	- BW: DC to 50 MHz - Max. voltage ≤ 7000 Vpp (DC + AC P-P) - Compatibility: All models of RIGOL's digital oscilloscopes
RP1100D	High-voltage Differential Probe	- BW: DC to 100 MHz - Max. voltage ≤ 7000 Vpp (DC + AC P-P) - Compatibility: All models of RIGOL's digital oscilloscopes

Model Type \quad Description

Current Probe

BW: DC to 300 kHz
Maximum Input

AC: ± 100 A \quad| AC P-P: 200 A |
| :--- |
| AC RMS: 70 A |

Specifications

All the specifications are guaranteed except the parameters marked with "Typical" and the oscilloscope needs to operate for more than 30 minutes under the specified operation temperature.

Overview of the DHO900 Series Technical Specifications

Overview of the DHO900 Series Technical Specifications				
Model	DHO914	DHO914S	DHO924	DH0924S
Analog Bandwidth (-3 dB)	125 MHz		250 MHz	
Rise Time (10\% to 90\%, typical)	≤ 2.8 ns		≤ 1.4 ns	
No. of Input/Output Channels	4 input analog channels 16 input digital channels (required to purchase the PLA2216 logic analyzer probe) single-channel arbitrary function generator (AFG) output (only available for the S model)			
Sampling Mode	Real-time Sampling			
Max. Sample Rate of Analog Channel	$1.25 \mathrm{GSa} / \mathrm{s}$ (single-channel ${ }^{[1]}$), $625 \mathrm{MSa} / \mathrm{s}$ (dual-channel ${ }^{[2]]}$), $312.5 \mathrm{MSa} / \mathrm{s}$ (full-channel ${ }^{[3]}$)			
Max. Memory Depth	50 Mpts (single-channel ${ }^{[1]}$), 25 Mpts (dual-channel ${ }^{[2]}$), 10 Mpts (fullchannel ${ }^{[3]}$)			
Max. Waveform Capture Rate	$30,000 \mathrm{wfms} / \mathrm{s}$ (Vector Mode) 1,000,000 wfms/s (UltraAcquire Mode)			
Vertical Resolution	12 bits			
Hardware Real-time Waveform Recording and Playing	Max. 500,000 frames			
Peak Detection	Capture 1.6 ns glitches			
LCD Size and Type	7" capacitive multi-touch screen			
Display Resolution	1024×600			

Vertical System Analog Channel

Vertical System Digital Channel

Vertical System Digital Channel	
Number of Channels	16 input channels (D0 to D15)
	(D0 to D7, D8 to D15)
Threshold Range	$\pm 15.0 \mathrm{~V}$, in 10 mV step
Threshold Accuracy	$\pm(100.00 \mathrm{mV}+3 \%$ of threshold setting)
Threshold Selection	TTL(1.4 V), CMOS5.0(2.5 V), CMOS3.3(1.65 V), CMOS2.5(1.25 V), CMOS1.8(0.9 V), ECL(-1.3 V), PECL(3.7 V), LVDS(1.2 V), 0.0V
	User (threshold adjustable for a single channel)
Max. Input Voltage	$\pm 40 \mathrm{~V}$ peak CAT I; transient overvoltage 800 Vpk
Max. Input Dynamic Range	$\pm 10 \mathrm{~V}+$ threshold
Minimum Voltage Swing	500 mVpp
Input Impedance	about $101 \mathrm{k} \Omega$
Probe Load	about 8 pF
Vertical Resolution	1 bits

Horizontal System--Analog Channel

Horizontal System--Analog Channel	
Range of Time Base	$2 \mathrm{~ns} /$ div to $500 \mathrm{~s} /$ div
	Fine
Time Base Resolution	100 ps
Time Base Accuracy	$\pm 25 \mathrm{ppm} \pm 5 \mathrm{ppm} / \mathrm{year}$
Time Base Delay Range	-5 div
	1 s or 100 div, whichever is greater
Delta Time Accuracy	$\begin{aligned} & \pm(\text { Time Base Accuracy } \times \text { Readout }) \pm(0.001 \times \text { Screen Width }) \\ & \pm 20 \text { ps } \end{aligned}$
Channel-to-Channel Skew Correction	$\pm 100 \mathrm{~ns}$, Accuracy $\pm 1 \mathrm{ps}$
Analog Channel-to-Channel Delay (Typical) ${ }^{[5]}$	$\leq 2 \mathrm{~ns}$

Horizontal System--Analog Channel		
	YT	Default
Horizontal Mode	Channel $1 / 2 / 3 / 4$	
	SCAN	Time base $\geq 200 \mathrm{~ms} /$ div
	ROLL	Time base $\geq 50 \mathrm{~ms} /$ div, available to enter or exit the ROLL mode by adjusting the horizontal timebase knob

Horizontal System--Digital Channel

Horizontal System--Digital Channel

Min. Detectable Pulse Width 5 ns

	200 MHz (accurately copied as the sine wave of the maximum frequency of the logic square wave; input amplitude is the minimum swing; the shortest the ground cable is required for the logic probe)
Channel-to-Channel Skew (Typical) ${ }^{[6]}$	$\pm 5 \mathrm{~ns}$

Acquisition System

Acquisition System

Max. Sample Rate of $1.25 \mathrm{GSa} / \mathrm{s}$ (single-channel ${ }^{[1]}$), $625 \mathrm{MSa} / \mathrm{s}$ (dual-channel ${ }^{[2]}$), $312.5 \mathrm{MSa} / \mathrm{s}$ Analog Channel (full-channel ${ }^{[3]}$)

Max. Memory Depth	50 Mpts (single-channel ${ }^{[1]}$), 25 Mpts (dual-channel ${ }^{[2]}$), 10 Mpts (full- of Analog Channel channel ${ }^{[3]}$)

	Normal	Default
Acquisition Mode	Peak Detection	Capture 1.6 ns glitches
	Average Type	$2,4,8,16 \ldots 65536$ are available for you to choose
	UltraAcquire	Waveform capture rate up to $1,000,000 \mathrm{wfms} / \mathrm{s}$

Trigger System

Trigger System

Trigger Source	Analog channel (CH 1 to CH 4$)$, digital channel (D 0 to D15)
Trigger Mode	Auto, Normal, Single
Trigger Coupling	DC DC coupling trigger
	AC AC coupling trigger
	High Frequency \quad Cut-off frequency to 120 kHz (internal trigger only) Rejection
	Low Frequency Cut-off frequency to 120 kHz (internal trigger only) Rejection
Noise Rejection	Increases delay for the trigger circuit (internal trigger only), On/Off
Holdoff Range	8 ns to 10 s
Trigger Bandwidth	Internal trigger: analog bandwidth of the oscilloscope
Trigger Sensitivity	Internal trigger: $0.5 \mathrm{div}, \geq 50 \mathrm{mV} / \mathrm{div}$; 0.7 div (with noise rejection enabled)
Trigger Level Range	Internal trigger: ± 4.5 div from the center of the screen
Trigger Type	
Trigger Type	
Trigger Type	Edge trigger, Pulse trigger, Slope trigger, Video trigger, Pattern trigger, Duration trigger, Timeout trigger, Runt trigger, Window trigger, Delay trigger, Setup/Hold trigger, Nth Edge trigger, RS232/UART, I2C, SPI, CAN, and LIN
Edge	Triggers on the threshold of the specified edge of the input signal. The edge types can be Rising, Falling, or Either. Source channel: CH1 to CH4, D0 to D15
Pulse	Triggers on the positive or negative pulse with a specified width. The pulse width is greater or smaller than a certain value or within a certain time range. Source channel: CH1 to CH4, D0 to D15

Trigger Type	
Slope	Triggers on the positive or negative slope of the specified time. The slew time is greater or smaller than a certain value or within a certain time range. Source channel: CH 1 to CH 4
Video	Triggers on all lines, specified line, odd field, or even field that conforms to the video standards. The supported video standards include NTSC, PAL/SECAM, $480 p / 60 \mathrm{~Hz}, 576 \mathrm{p} / 50 \mathrm{~Hz}, 720 \mathrm{p} / 60 \mathrm{~Hz}, 720 \mathrm{p} / 50 \mathrm{~Hz}, 720 \mathrm{p} / 30 \mathrm{~Hz}, 720 \mathrm{p} / 25 \mathrm{~Hz}, 720 \mathrm{p} /$ $24 \mathrm{~Hz}, 1080 \mathrm{p} / 60 \mathrm{~Hz}, 1080 \mathrm{p} / 50 \mathrm{~Hz}, 1080 \mathrm{p} / 30 \mathrm{~Hz}, 1080 \mathrm{p} / 25 \mathrm{~Hz}, 1080 \mathrm{p} / 24 \mathrm{~Hz}, 1080 \mathrm{i} /$ 60 Hz , and $1080 \mathrm{i} / 50 \mathrm{~Hz}$. Source channel: CH 1 to CH 4
Pattern	Identifies a trigger condition by searching for a specified pattern. The pattern is a combination of multiple selected channel sources. The logic pattern of each channel is $\mathrm{H}, \mathrm{L}, \mathrm{X}$, Rising, or Falling. Source channel: CH1 to CH4, D0 to D15
Duration	Triggers when the specified pattern meets the specified duration condition. The pattern is a combination of multiple selected channel sources. The logic pattern of each channel is H, L, and X . The duration is greater or smaller than a certain value, or within a certain time range, or outside a certain time range. Source channel: CH1 to CH4, D0 to D15
Timeout	Triggers when duration of a certain event exceeds the specified time. The event can be specified as Rising, Falling, or Either. Source channel: CH1 to CH4, D0 to D15
Runt	Triggers when the pulses pass through one threshold but fail to pass through another threshold. Source channel: CH 1 to CH 4
Window	Triggers in a specified window state when the rising edge of the signal crosses the upper threshold or the falling edge crosses the lower threshold. The window state can be Enter, Exit, or Time. Source channel: CH1 to CH4
Delay	Triggers when the time difference between the specified edges of Source A and Source B meets the preset time. The duration is greater or smaller than a certain value, or within a certain time range, or outside a certain time range. Source channel: CH1 to CH4, D0 to D15
Setup/Hold	When the setup time or hold time between the input clock signal and the data signal is smaller than the specified time. Source channel: CH1 to CH4, D0 to D15
Nth Edge	Triggers on the Nth edge that appears after the specified idle time. The edge can be specified as Rising or Falling. Source channel: CH1 to CH4, D0 to D15

Trigger Type	
RS232/UART	Triggers on the Start, Error, Check Error, or Data frame of the RS232/UART bus (up to $20 \mathrm{Mb} / \mathrm{s}$). Source channel: CH1 to CH4, D0 to D15
I2C	Triggers on the Start, Stop, Restart, MissedACK, Address (7 bits, 8 bits, or 10 bits), Data, or Address Data of the I2C bus. Source channel: CH1 to CH4, D0 to D15
SPI	Triggers on the specified pattern of the specified data width (4 to 32) of SPI bus. CS and Timeout are supported. Source channel: CH1 to CH4, D0 to D15
CAN	Triggers on the start of a frame, end of a frame, Remote ID, Overload, Frame ID, Frame Data, Data\&ID, Frame Error, Answer Error, Check Error, Format Error, Bit Fill, and Random of the CAN signal (up to 5Mb/s). The supported CAN bus signal types include CAN_H, CAN_L, TX/RX, and DIFF.
Source channel: CH1 to CH4, D0 to D15	

Search\&Navigation

Search\&Navigation	
Type	Edge, Pulse
Source	Analog channel
Copy	Copies the search settings from or to the trigger settings mutually, including threshold setting and search condition settings
Result Display	Displays in event table form; can be exported to the external or internal memory
	Time navigation: navigates to the acquired waveforms in time order. Event navigation: uses the navigation keys to scroll through the event search results and navigates to the specified event.
Frame navigation: navigates to the specified frame segment in UltraAcquire mode.	

Waveform Measurement

Waveform Measurement		
Cursor	Number of Cursors	2 pairs of XY cursors
	Manual Mode	Voltage deviation between cursors ($\Delta \mathrm{Y}$) Time deviation between cursors ($\Delta \mathrm{X}$) Reciprocal of $\Delta X(H z)(1 / \Delta X)$
	Track Mode	Fixes Y -axis to track X -axis waveform point's voltage and time values Fixes X -axis to track Y -axis waveform point's voltage and time values
	Auto Measurement	Allows to display cursors during auto measurement
	XY Mode	Measures the voltage parameters of the corresponding channel waveforms in XY time base mode. $X=\text { Channel } 1, Y=\text { Channel } 2$
Auto Measurement	Number of Measurements	41 auto measurements; and up to 10 measurements can be displayed at a time.
	Measurement Source	CH1 to CH4, D0 to D15, Math1 to Math4
	Measurement Range (Region)	Main, Zoom
	All Measurement	Displays 33 measurement items (vertical and horizontal) for the current measurement channel; the measurement results are updated continuously.
	Vertical	Vmax, Vmin, Vpp, Vtop, Vbase, Vamp, Vupper, Vmid, Vlower, Vavg, VRMS, Per. VRMS, Overshoot, Preshoot, Area, and Period Area.
	Horizontal	Period, Frequency, Rise Time, Fall Time, +Width, -Width, +Duty, -Duty, Positive Pulse Count, Negative Pulse Count, Rising Edge Count, Falling Edge Count, Tvmax, Tvmin, +Slew Rate, and Slew Rate
	Others	Delay(A $\uparrow-B \uparrow)$, Delay (A $\uparrow-B \downarrow)$, Delay (A $\downarrow-B \uparrow$), Delay (A $\downarrow-B \downarrow$), Phase(A $\uparrow-B \uparrow)$, Phase($A \uparrow-B \downarrow$), Phase($A \downarrow-B \uparrow$), and Phase($A \downarrow-B \downarrow$)

Waveform Calculation

Waveform Calculation		
No. of Math Functions	4 math functions available to be displayed at a time	
Operation	$A+B, A-B, A \times B, A / B, F F T, A \& \& B, A \\| B, A^{\wedge} B,!A$, Intg, Diff, Sqrt, Lg, Ln, Exp, Abs, AX+B, LowPass, HighPass, BandPass, and BandStop	
Color Grade	Supports FFT	
Record Length	Max. 1 Mpts (The max. number of the points to be analyzed for the FFT operation is 1 Mpts .)	
FFT Window Type	Rectangular, Blackman-Harris, Hanning (default), Hamming, Flattop, and Triangle.	
Peak Search	A maximum of 15 peaks, determined by the user-defined threshold and offset threshold	
Waveform Analysis		
Waveform Analysis		
Waveform Recording	Stores the signal under test in segments according to the trigger events, that is, saves all the sampled waveform data as a segment to the RAM for each trigger event. The maximum number of the sampled segments reaches 500,000.	
	All enabled analog channels	
	Support playing frame by frame or continuous playing; capable of calculating, measuring, and decoding the played waveforms	
PassFail	Compares the signal under test with the user-defined mask to provide the test results: the number of successful tests, failed tests, and the total number of tests. The pass/fail event can enable immediate stop, beeper, and the screenshot.	
Source	Any analog channel	

Waveform Analysis		
Histogram		The waveform histogram provides a group of data, showing the number of times a waveform hits within the defined region range on the screen. The waveform histogram not only shows the distribution of hits, but also the ordinary measurement statistics.
	Source	Any analog channel, auto measurement item
	Type	Horizontal, vertical, and measure
	Measure	Statistics: Sum, Peaks, Max, Min, Pk_Pk Histogram: Mean, Median, Mode, Bin width, Sigma, and XScale
	Sampling Mode	Supports all modes, except the Zoom, XY , and ROLL modes
Color Grade		Provides a dimensional view for waveform intensity, color grade $>16,256$-level color scale display
	Source	Any analog channel
	Color Theme	Temperature and intensity
	Sampling Mode	Supports all modes

Serial Decoding

Serial Decoding

Number of Decodings	4 protocol types can be decoded and enabled at the same time
Decoding Type	Standard: Parallel, RS232/UART, I2C, SPI, LIN, and CAN
Parallel	Up to 4 bits of Parallel decoding, supporting any analog channel Support user- defined clock and auto clock settings. Source channel: CH1 to CH4, D0 to D15
RS232/UART	Decodes the RS232/UART (up to 20 Mb/s) bus's TX/RX data (5-9 bits), parity (Odd, Even, or None), and stop bits (1-2 bits) Source channel: CH1 to CH4, D0 to D15
I2C	Decodes the address (with or without the R/W bit) of the I2C bus, data, and ACK.
Source channel: CH1 to CH4, D0 to D15	

Serial Decoding

SPI	Decodes the MISO/MOSI data (4-32 bits) of the SPI bus. The available mode includes "Timeout" and "CS". Source channel: CH1 to CH4, D0 to D15
CAN	Decodes the remote frame (ID, byte number, CRC), overload frame, and data frame (standard/extended ID, control domain, data domain, CRC, and ACK) of the CAN bus (up to $5 \mathrm{Mb} / \mathrm{s})$. The supported CAN bus signal types include CAN_H, CAN_L, TX/RX, and DIFF. Source channel: CH1 to CH4, D0 to D15
LIN	Decodes the protocol version (1.X or $2 . \mathrm{X}$) of the LIN bus (up to $20 \mathrm{Mb} / \mathrm{s})$. The decoding displays sync, ID, data, and check sum. Source channel: CH1 to CH4, D0 to D15

Bode Plot ${ }^{[7]}$

Bode Plot	
Start Freq	10 Hz to 24.99 MHz
Stop Freq ${ }^{[8]}$	100 Hz to 25 MHz
Number of Points per Octave	10 to 300

Output Amplitude 20 mV to 5 V

Arbitrary Function Generator (AFG) ${ }^{[7]}$

| AFG (technical specifications are typical values)
 Number of
 Channels 1
 Output Mode Normal (Single-channel output)
 Sample Rate $156 \mathrm{MSa} / \mathrm{s}$
 Vertical Resolution 14 bits
 Max. Frequency 25 MHz
 Output Waveform Standard Waveform: Sine, Square, Ramp, DC, Noise
 User-defined waveform: supported |
| :--- | :--- |

AFG (technical specifications are typical values)		
Sine	Frequency Range	2 mHz to 25 MHz
	Flatness	$\pm 0.5 \mathrm{~dB}$ (relative to 1 kHz)
	Harmonic Distortion	-40 dBc
	Spurious (nonharmonics)	-40 dBc
	Total Harmonic Distortion	<1\%
	S/N Ratio	40 dB
Square	Frequency Range	2 mHz to 15 MHz
	Rise/Fall Time	<15 ns
	Overshoot	<5\%
	Duty	1\% to 99\%, adjustable
	Jitter	500 ps
Ramp	Frequency Range	2 mHz to 150 kHz
	Linearity	1\%
	Symmetry	0 to 100\%
Noise	Frequency Range	25 MHz analog bandwidth
Arbitrary Waveform	Frequency Range	2 mHz to 10 MHz
	Waveform Length	2 pts to 16 kpts
	Supports loading the	he stored waveforms
Frequency	Accuracy	100 ppm
	Resolution	0.1 Hz or 4 bits (whichever is greater)
Amplitude	Output Range	$\begin{aligned} & 2 \mathrm{mV} \text { to } 10 \mathrm{~V} \text { (frequency } \leq 10 \mathrm{MHz} \text {) } \\ & 2 \mathrm{mV} \text { to } 5 \mathrm{~V} \text { (frequency > } 10 \mathrm{MHz} \text {) } \end{aligned}$
	Resolution	$100 \mu \mathrm{~V}$ or 3 bits (whichever is greater)
	Accuracy	$\pm(2 \%$ of setting $+1 \mathrm{mV})($ Frequency $=1 \mathrm{kHz})$

AFG (technical specifications are typical values)		
DC Offset	Range	-5 V to 5 V
	Resolution	$100 \mu \vee$ or 3 bits (whichever is greater)
	Accuracy	$\pm(2 \%$ of offset setting $+5 \mathrm{mV}+0.5 \%$ of amplitude)
Modulation	AM	Modulating Waveform: Sine, Square, Triangle, Up Ramp, Down Ramp, and Noise. Carrier Waveform: Sine, Square, Ramp Modulation Source: Internal Modulation Depth: 0\% to 120\% Modulation Frequency: 2 mHz to 1 MHz
	FM	Modulating Waveform: Sine, Square, Triangle, Up Ramp, Down Ramp, and Noise. Carrier Waveform: Sine, Square, Ramp Modulation Source: Internal Frequency Deviation: 2 mHz to set carrier frequency (limited by the carrier frequency setting; the sum of the frequency deviation and carrier frequency shall not exceed the upper limit of the carrier frequency) Modulation Frequency: 2 mHz to 1 MHz
	PM	Modulating Waveform: Sine, Square, Triangle, Up Ramp, Down Ramp, and Noise. Carrier Waveform: Sine, Square, Ramp Modulation Source: Internal Phase Deviation: 0° to 360°, default 90° Modulation Frequency: 2 mHz to 1 MHz

Auto

Auto
AutoScale \quad Min voltage $>10 \mathrm{mVpp}$, duty cycle $>1 \%$, frequency $>35 \mathrm{~Hz}$

Digital Voltmeter

Digital Voltmeter

Source	Any analog channel
Function	$\mathrm{DC}, \mathrm{AC}+\mathrm{DC}_{r m s}, \mathrm{AC}_{\mathrm{rms}}$

Digital Voltmeter

Resolution	ACV/DCV: 3 digits
Limits Beeper \quad Sounds an alarm when the voltage value is within or outside of the limit range	
High-precision Frequency Counter	

High-precision Frequency Counter

Source	Any analog channel	
Measure	Frequency, period, totalizer	
Counter	Resolution	$3-6$ digits, user-defined
	Max. Frequency	Max. analog bandwidth
Totalizer	48-bit totalizer	
Time Reference	Counts the number of the rising edges	

Command Set

Command Set	
Common Commands Support	IEEE488.2 Standard
Error Message Definition	Error messages
Support Status Report Mechanism	Status Reporting
Support Syn Mechanism	Synchronization

Display

Display	
LCD	7-inch capacitive multi-touch screen, gesture enabled operation
Resolution	1024×600 (Screen Region) 16:9
Graticule	10 horizontal divisions $\times 8$ vertical divisions
Persistence	Off, Infinite, variable persistence (100 ms to 10 s$)$
Brightness	256 intensity levels (LCD, HDMI)

Processor System

Processor System	
Processor	Cortex-A72 up to 1.8 GHz , 6-core processor
System Memory	4 GB RAM
Operating System	Android
Internal Non-volatile Memory	8 GB
1/0	
1/0	
USB2.0 Host	1 on the front panel
USB2.0 Device	1 on the rear panel
LAN	1 on the rear panel, 10/100 Base-T, supporting LXI-C
Web Remote Control	Supports Web Control interface (input the IP address of the oscilloscope into the Web browser to display the operation interface of the oscilloscope)
AFG OUT ${ }^{[7]}$ Waveform Output	1 on the rear panel, BNC connector
AUX OUT	1 on the rear panel, BNC connector
	Vo (H) $\geq 2.5 \mathrm{~V}$ open circuit, $\geq 1.0 \mathrm{~V} 50 \Omega$ to GND
	Vo (L) $\leq 0.7 \mathrm{~V}$ to load $\leq 4 \mathrm{~mA}, \leq 0.25 \mathrm{~V} 50 \Omega$ to GND
	Outputs a pulse signal when the oscilloscope is triggered
	Output a pulse signal when a pass/fail event occurs. Supports user-defined pulse polarity and pulse time (100 ns to 10 ms)
HDMI Video Output	1 on the rear panel, HDMI 1.4, A plug. It is used to connect to an external monitor or projector
Probe	
Compensation Output	$1 \mathrm{kHz}, 3 \mathrm{~V}_{\mathrm{pp}}$ square waveform

Power Supply

Power Supply

Power Supply \quad Type-C
Interface

Power Voltage	DC 12 V,4 A
Power	Max. 48 W (when connected to various interfaces, USB storage device, active probes)

Environment

Environment		
Temperature Range	Operating	$0^{\circ} \mathrm{C}$ to $50^{\circ} \mathrm{C}$
	Non-operating	$-30^{\circ} \mathrm{C}$ to $+60^{\circ} \mathrm{C}$
		below $+30^{\circ} \mathrm{C}: \leq 90 \% \mathrm{RH}$ (without condensation)
Humidity Range	Operating	$+30^{\circ} \mathrm{C}$ to $+40^{\circ} \mathrm{C}, \leq 75 \% \mathrm{RH}$ (without condensation)
		Non-operating
	Operating	below $60^{\circ} \mathrm{C}$ to $+50^{\circ} \mathrm{C}, \leq 45 \% \mathrm{RH}$ (without condensation) $\leq \mathrm{RH}$ (without condensation) $3,000 \mathrm{~m}$
Altitude	Non-operating	Below $15,000 \mathrm{~m}$

Warranty and Calibration Interval

Warranty and Calibration Interval

Warranty
Three years for the mainframe, excluding the probes and accessories.
Recommended
Calibration Interval
18 months

Regulations

Regulations

	Compliant with EMC DIR the standards specified i A	E 2014/30/EU, compliant with or higher than 61326-1:2013/EN 61326-1:2013 Group 1 Class
	CISPR 11/EN 55011	
	$\begin{aligned} & \text { IEC 61000-4-2:2008/EN } \\ & 61000-4-2 \end{aligned}$	$\pm 4.0 \mathrm{kV}$ (contact discharge), $\pm 8.0 \mathrm{kV}$ (air discharge)
	$\begin{aligned} & \text { IEC 61000-4-3:2002/EN } \\ & 61000-4-3 \end{aligned}$	$3 \mathrm{~V} / \mathrm{m}(80 \mathrm{MHz}$ to 1 GHz$) ; 3 \mathrm{~V} / \mathrm{m}(1.4 \mathrm{GHz}$ to $2 \mathrm{GHz}) ; 1 \mathrm{~V} / \mathrm{m}(2.0 \mathrm{GHz}$ to 2.7 GHz$)$
Electromagnetic Compatibility	$\begin{aligned} & \text { IEC 61000-4-4:2004/EN } \\ & 61000-4-4 \end{aligned}$	1 kV power line
	$\begin{aligned} & \text { IEC 61000-4-5:2001/EN } \\ & 61000-4-5 \end{aligned}$	0.5 kV (phase-to-neutral voltage); 1 kV (phase-to-earth voltage); 1 kV (neutral-toearth voltage)
	$\begin{aligned} & \text { IEC 61000-4-6:2003/EN } \\ & 61000-4-6 \end{aligned}$	$3 \mathrm{~V}, 0.15-80 \mathrm{MHz}$
	$\begin{aligned} & \text { IEC 61000-4-11:2004/EN } \\ & 61000-4-11 \end{aligned}$	Voltage dip: 0\% UT during half cycle; 0\% UT during 1 cycle; 70\% UT during 25 cycles short interruption: 0\% UT during 250 cycles

EN 61010-1:2019
EN 61010-031:2015
IEC 61010-1:2016
IEC 61010-2-030:2017
Safety
UL 61010-1:2012 R7
UL 61010-2-31:2017 R2
CAN/CSA-22.2 No. 61010-1-12:2017
CAN/CSA-22.2 No. 61010-2-30:2018
CAN/CSA-22.2 No. 61010-031-07:201

Vibration	Meets GB/T 6587; class 2 random
	Meets MIL-PRF-28800F and IEC60068-2-6; class 3 random

Regulations

Shock
Meets GB/T 6587-2012; class 2 random
Meets MIL-PRF-28800F and IEC 60068-2-27; class 3 random
In non-operating conditions: 30 g , half-sine wave, 11 ms duration, 3 shocks along the main axis, total of 18 shocks

Mechanical Characteristics

Mechanical Characteristics	
Dimensions	$265.35 \mathrm{~mm}(\mathrm{~W}) \times 161.75 \mathrm{~mm}(\mathrm{H}) \times 77.38 \mathrm{~mm}(\mathrm{D})$
Weight ${ }^{[9]}$	Package excluded: 1.78 kg
	Package included: 2.78 kg

Non-volatile Memory

Order Information and Warranty Period

Order Information

Order Information	Order No.
Model	
250 MHz , 1.25 GSa/s, 50 Mpts , 4CH	DHO924S
$250 \mathrm{MHz}, 1.25 \mathrm{GSa} / \mathrm{s}, 50 \mathrm{Mpts}$, 4CH	DHO924
$125 \mathrm{MHz}, 1.25 \mathrm{GSa} / \mathrm{s}, 50 \mathrm{Mpts}$, 4CH	DHO914S
125 MHz , 1.25 GSa/s, 50 Mpts , 4CH	DH0914
Standard Accessories	
Power Adaptor Conforming to the Standard of the Destination Country	- -
Banana-Plug Ground Connecting Cable	- -
DHO924/DHO924S: Passive Probe 44 (350 MHz)	PVP2350
DHO914/DHO914S: Passive Probe $\times 4$ (150 MHz)	PVP3150
Recommended Accessories	
16-channel Logic Analyzer Probe	PLA2216
NOTE:	
For all the mainframes, accessories and options, please contact the local office of RIGOL.	
Warranty Period	

Three years for the mainframe, excluding the probes and accessories.

Option Ordering and Installation Process

1. According to the usage requirements, please purchase the specified function options from RIGOL Sales Personnel, and provide the serial number of the instrument that needs to install the option.
2. After receiving the option order, the RIGOL factory will mail the paper software product entitlement certificate to the address provided in the order.
3. Log in to RIGOL official website for registration. Use the software key and instruments serial number provided in the entitlement certificate to obtain the option license code and the option license file.
4. Download the option license file to the root directory of the USB storage device, and connect the USB storage device to the instrument properly. After the USB storage device is successfully recognized, the Option install menu is activated. Press this menu key to start installing the option.

RIGOL TECHNOLOGIES CO., LTD.
No. 8 Keling Road, New District, Suzhou,
JiangSu, P.R.China
Tel: +86-400620002
Email: info@rigol.com

EUROPE
RIGOLTECHNOLOGIES EU GmbH
Carl-Benz-Str. 11
82205 Gilching
Germany
Tel: +49(0)8105-27292-0
Email: info-europe@rigol.com

NORTH AMERICA
RIGOLTECHNOLOGIES, USA INC.
10220 SW Nimbus Ave.
Suite K-7
Portland, OR 97223
Tel: +1-877-4-RIGOL-1
Fax: +1-877-4-RIGOL-1
Email: info@rigol.com

JAPAN
RIGOLJAPAN CO., LTD
5F,3-45-6,Minamiotsuka,
Toshima-Ku,
Tokyo,170-0005,Japan
Tel: +81-3-6262-8932
Fax: +81-3-6262-8933
Email: info-japan@rigol.com

RIGOL ${ }^{\circledR}$ is the trademark of RIGOL TECHNOLOGIES CO., LTD. Product information in this document is subject to update without notice. For the latest information about RIGOL's products, applications and services, please contact local RIGOL channel partners or access RIGOL official website: www.rigol.com

